Volume : 06 | Issue : 04 | Oct.-Dec. | 2017

Pages:868-886

Minimizing salinity hazard of Valencia orange trees through manipulation of anti-salt stress substances

¹Atawia, A.A.R., ¹Abd-Latif, F.M., ¹Ismaeil, Faten H. M., ²Youniss, S.A. and ²Maghoury, F. I. F.

¹Fac. of Agric., Benha University, Egypt.

²Desert Research Center, Mataria, Cairo. Egypt.

Received: 18 July 2017 / Accepted: 20 Sept. 2017 / Publication date: 08 Oct. 2017

ABSTRACT

Vegetative growth and some leaf physiological characteristics of drip irrigated Valencia orange trees with saline irrigation water. In relation to K-silicate, Nile Fertile and Magnetic Iron as anti-salt stress substances were investigated during 2014-2015 and 2015-2016 experimental seasons. Results revealed that sprayed trees with K-silicate or Nile Fertile or Magnetic Iron or triple treated trees were highly responded as most of vegetative growth salinity symptom were disappeared as well as leaf physiological characteristics. The best results in this regard were obtained when the trees were received K-silicate at 10ml/L + Nile Fertile at 500 g/tree + Magnetic Iron at 300 g/tree as such treatments enhanced vegetative growth and leaf physiological characteristics as well as minimized leaf osmotic pressure.

Key words: potassium silicate, Nile Fertile, magnetic iron, vegetative growth, leaf physiological characteristics, saline irrigation water and Valencia orange trees.

Introduction

Citrus is a major fruit crop cultivated in Egypt as its acreage, production and exportation potentialities are concerned. It is the largest horticultural industry, during the last few years, and harvested area increased rapidly from year to another (533885 fed. in 2015 from the total fruit crops area, which estimated to be 1609189 fed.) The fruiting acreage of citrus occupies about 449601 fed. And produced about 4646579 tons with average of 9.83 tons/fed. (According to Ministry of Agriculture and Land Reclamation of Egypt, 2015).

Salinity is one of the most serious and oldest environmental problems affecting approximately one third of earth's irrigation land. There are many factors affecting the salinity yield relationship such as the physical and chemical condition of the soil, climate and farming practices.

Also, the possibility of using saline water for irrigation, especially underground water is considering as a limiting factor and great value for the success of the projects of new land reclamation, which it is still very limited source until now, however many problems are expected to arise. These problems would be related to the excessive accumulation of salts in the soil because this water contains considerable amounts.

As alternative strategy for overcoming the negative effects of salinity on plant growth and yield could be attempt to treat the trees with some anti-salt stress substances as silicon, Nile Fertile and magnetic iron, where irrigation water is known to be or may become saline.

Silicon is the second most abundant element in the earth's crust, has not yet received the title of essential nutrient for higher plants, as its role in plant biology is poorly understood (Epstein, 1999). However, various studies have demonstrated that Si application increased plant growth significantly (Alvarez and Datnoff, 2001). The function of Si as a protective agent is one of the most important for plants. Improved Si nutrition has been shown to increase plant tolerance to a biotic stress such as Al, Mn, heavy metal toxicities, salinity, frost and drought (Epestein, 1999). In this respect, grove studies conducted in Russia on citrus responses to Si fertilizers showed 30 to 80% accelerated growth, (Taranovskaia, 1939) In addition to, (Wutscher, 1989) mentioned that, citrus trees treated with Si absorbed more nutrients than the untreated trees. In plants growing under salt- stress conditions,

added silicon helps in maintain an adequate supply of essential nutrient and reduce sodium uptake and its transport to shoots (Tuna et al., 2008).

Nile Fertile (N.F) is oxidized by soil microorganisms, such as *Thiobacillus spp*. Bacteria which, consider as the most important microorganisms involved in the bioleaching of sulphide compounds to sulphuric acid in amount enough to decrease soil PH, improve availability of most soil nutrients and uptake by plant, enhancing root development and increasing the activity of soil microorganisms (Kassem *et al.*, 1995).

Magnetite (M. I), is one of the most important factors affecting plant growth and it is a natural row rock that has very high iron content, Magnetite has a black or brownish-red, and it has hardness about 6 on the Mohs hardness scale, it is one of two natural row rocks in the world that is naturally magnetic (Mansour, 2007). Application of magnetic iron increased vegetative growth, yield and on pepper plant grow under saline irrigation conditions, Taha *et al.* (2011). Also, magnetic iron increased plant growth and leaf mineral content on cauliflower (Mansour, 2007). Magnetite may be play an important role in cation uptake capacity and has a positive effect on immobile plant nutrient uptake (Esitken, 2003).

The present study aimed to minimize the adverse effects of salinity irrigation water on tree growth and leaf physiological characteristics of Valencia orange trees through manipulation with some anti-salt stress substances (potassium silicate, Nile Fertile and magnetic iron).

Materials and Methods

The present study was conducted during two successive experimental seasons (2014–2015) and (2015–2016) on Valencia orange trees Olenda cv. grown in a private orchad, which was located at El Bustan district, El Behera Governorate, Egypt. Five – year old trees of Valencia orange "Olenda "cv. budded on Volkamer lemon rootstock (*citrus volkameriana*). Were the plant materials in this investigating. 81 healthy fruitful trees were carefully selected and devoted for achieving this work. The selected trees were nearly uniform as possible as we could in their growth, grown in calcareous soil, planted at (5 X 5) m apart, irrigated through drip salted water and the trees were subjected to the same annual regular horticulture management. Water chemical analysis was done and listed in Table (1).

Table 1: chemical analysis of irrigation water:

Solu	able cation	ns mg/L		Solub	le anion	s mg/L		DП	EC	TSS	
Ca ⁺⁺	Mg ⁺⁺	K ⁺	Na ⁺	HCO ₃ -	CO ₃ -	SO ₄ -	Cl-	гп	PH EC		
128	43.04	43.04	450	131.15	15	600	491.84	7.4	4.4	2816	

The Different anti-salt stress substances which have been suggested to build up the Skelton of such investigation were as follow:

- 1) Potassium Silicate, contained 10% K_2O , 25% SIO_2 were applied as foliar spray at 3 levels (0, 5, 10) ml / L at spring cycle emerging in once/month starting from the $1^{\underline{st}}$ week of march until July late during 2014 and 2015 experimental seasons.
- 2) Nile Fertile (NF), contains 38% S, some essential elements, (2.7% N, 3.5% P, 1.2% K, 5% Ca, 2.7% Mg and 1% Fe) and Sulphur bacteria; *Thiobacillus spp.* (10⁶ CFU/gm), and soil applied as a single dose at 3 levels (0, 250, 500) gm/ tree) in the first of January around root spread area for both seasons.
- 3) Magnetic Iron ore (MIO), contained 48.8% Fe₃O₄,17.3% Fe O, 26.7% Fe₂O₃, 2.6% MgO, 4.3% SiO₂ and 0.3% CaO, it was once soil applied at 3 levels (0, 300, 600) gm/ tree in the first of January around root spread area for both seasons.

The experiment involved three factors (A, B and C). The first factor (A) consisted of three levels (0.0, 5.0, 10.0 ml/L) of Potassium Silicate, the second one (B) comprised from three levels (0.0, 250, 500 g/tree) of Nile Fertile and the third factor (C) contained three levels (0.0, 300, 600 g/tree) of

Magnetic Iron. Furthermore, the three levels of Potassium Silicate, Nile Fertile and Magnetic Iron were selected up to be the main, sub and sub sub plots, respectively.

The complete randomized block design (factorial experiment) was used for arranging the above mentioned twenty-seven anti-salt stress treatments. Each treatment was replicated three times, whereas each replicate was represented by a single tree.

Methodology regarding the influence of the investigated treatments on growth, nutritional status and fruiting of Valencia orange trees was being determined as follows:

Vegetative Growth Measurements:

The impact of the different investigated anti-salt stress substances on some vegetative growth measurements has to be evaluated, thus four main branches well distributed around the periphery of each replicate (tree) were labeled. On each selected branch ten newly emerging shoots were tagged and the aforementioned growth parameters were estimated in late of October during both seasons, as follow:

Shoot length (cm)

Shoot diameter (cm) at the base of shoot

Number of leaves / Shoot

Average leaf area (cm²)

Tree canopy volume (m³)

Tree volume was calculated according to the following equation reported by Morse and Robertson, (1987).

 $TV = 0.5236 \times HD^2$, Where H = tree height, D= tree diameter.

Leaf Physiological characteristics:

Leaf relative turgidity (L.R.T).

Discs of about 1 cm in diameter, were removed from each fresh leaf sample to determine their fresh weight immediately (F.W), then placed in a closed container (petri dishes) until they become constant in weight (after 24 hours) at room temperature (20±2 °C) in shade, The discs were surfuce dried with plotting paper and weighed for their turgid weight (Tr.W). Dry weight (Dr.W) of each 10 discs was determined after 24 hours. Leaf relative turgidity was estimated according to the following equation Nomir (1994).

$$(L.R.T) = \frac{\text{Fresh wt.-Dry wt.}}{\text{Turgid wt. - Dry wt.}} \quad \text{x 100}$$

Leaf succulence grade (L.S.G): was estimated according to the following equation:

Leaf water content (in g) *

(L.S.G) =
$$\frac{\text{Leaf water content (in g) *}}{\text{Leaf area (Dec.)}^2} = (g) \text{ H}_2\text{O/dec}^2 \text{ of leaf}$$
*Whereas, leaf water content (in g) =

Total fresh weight – total dry weight of the leaves at the end of experiments

Total number of leaves at the end of experiments

According to Nomir (1994).

Leaf water potential (L.W. P):

Fresh weight - dry weight

(L.W.P) =
$$\frac{}{}$$
 x 100

Fresh weight

The method followed and the equation for the calculations have been suggested by Halma (1934) and confirmed by Draz (1986).

Leaf Osmotic pressure (in bar).

Adequate fresh leaf samples were immediately frozen, and then the cell sap was extracted in the laboratory with a piston pressure when the frozen tissue has been thawed. The sap total soluble solids were determined by refractometer and the equivalent values of the osmotic pressure (in bars) were estimated according to Gusov (1960).

Statistical analysis:

All data of the present investigation were subjected to analysis of variance and significant difference among mean were determined according to Snedecor and Cochran, (1980). In addition; significant differences among means were distinguished according to the Duncan's, multiple test range (Duncan 1955), whereas capital and small letters were used for differentiating the values of specific and interaction effects of the investigated factors, respectively.

Results and Discussion

Vegetative growth

The response of drip irrigated Valencia orange trees with saline water irrigation to some antisalt stress substances (potassium silicate at 0.0, 5.0 and 10 ml/L, Nile Fertile at 0.0, 250 and 500 g/tree and Magnetic Iron at 0.0, 300 and 600 g/tree) was studied through the determination of some vegetative growth parameters (shoot length, shoot diameter, number of leaves/shoot, average leaf area and tree canopy volume).

Shoot length

A. Specific effect:

Regarding the specific effect of the three investigated anti-salt stress substances (potassium silicate, Nile Fertile and Magnetic Iron) on shoot length of Valencia orange trees data presented in Table (2) reveal that, the highest significant value of shoot length was obtained when the trees where sprayed with potassium silicate at 10ml/L. Meanwhile Nile Fertile alone at 250 g/tree was more effective in this respect than 500 g/tree or untreated trees.

Concerning the specific effect of Magnetic Iron, it was clear that the higher dose 600 g/tree was better than the lower dose (300 g/tree) in enhancing shoot elongation.

B. Interaction effect:

With referring to the interaction between potassium silicate and Nile Fertile on shoot length, data indicated that the maximum shoot length was detected with the combination between potassium silicate at 10 ml/L and Nile Fertile at 500 g/tree.

Regarding the interaction between K-Silicate and Magnetic Iron on shoot length, data refer that K-Silicate at 10 ml/L combined with either 300 or 600 g/tree of Magnetic Iron reflected an increment in shoot elongation as compared with Magnetic Iron omitted combination.

With respect to the interaction effect between Nile Fertile and Magnetic Iron on shoot length, data clear that the soil addition of Nile Fertile at the two levels has no effect on shoot length parameter specially when Magnetic Iron was used alone at 600 g/tree as it was capable to achieve the highest value of shoot elongation, in addition, the maximum shoot elongation was recorded with the combination between Nile Fertile at 250 g/tree and Magnetic Iron at 300 g/tree.

On the other hand, the least value of shoot elongation was observed when the Valencia orange trees were not received neither Nile Fertile nor Magnetic Iron.

Regarding the interaction between the three investigated factors on shoot length, it is clear that the maximum value of shoot length was recorded with three different combinations in the first season:

- 1- K-Silicate at 10 ml/L + Nile Fertile at 500 g/tree + 0.0 Magnetic Iron
- 2- K-Silicate at 10 ml/L with Nile Fertile either at 500 or 250 g/tree + Magnetic Iron at 300 g/tree
- 3- K-Silicate at 10 ml/L + Magnetic Iron at 600 g/tree

Meanwhile, in the second season, the highest value of shoot elongation was associated with the combination between K-Silicate at 10 ml/L + Nile Fertile at 500 g/tree + Magnetic Iron at 600 g/tree.

On the other way around, the least value of shoot elongation was recorded with the trees which were not received any of the three investigated anti-salt stress substances.

Table 2: Shoot length (cm) of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

	Parameter				Shoot 1	ength (cm)			
Treatments			(2014 –	2015)			(2015 -	- 2016)	
K-Silicate	Nile Fertile	l	Magnetic Ir	on (g) (C)			Magnetic I	ron (g) (C)	
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*
	0	10.38jk	12.89f-i	16.17bc	13.15E	9.89j	13.33gh	15.76de	12.86F
0	250	12.08h-j	14.82b-f	13.98d-h	13.63E	11.53i	14.33e-h	13.78gh	13.22F
	500	15.11b-e	11.53ij	13.31e-i	13.32E	15.01e-g	13.58gh	14.08e-h	14.22E
Mean (A x C)**	12.52E	13.08DE	14.49C		12.01F	13.75E	14.54DE	
	0	12.73g-i	13.58d-h	13.73d-h	13.25E	13.75gh	14.52e-g	14.85e-g	14.37E
5	250	14.35c-g	14.03d-h	16.43b	14.94D	15.63d-f	14.85e-g	15.65d-f	15.38D
	500	9.56k	13.58d-h	13.10f-i	12.08F	12.63hi	14.01e-i	13.383f-h	13.49EF
Mean (A x C)**	12.11E	13.73CD	14.42C		14.00DE	14.46DE	14.78D	
	0	14.22d-g	15.55b-d	18.33a	16.04C	15.01e-g	17.03cd	17.58bc	16.54C
10	250	16.20bc	19.57a	18.71a	18.16B	17.14b-d	18.86b	18.18bc	18.06B
	500	19.22a	19.11a	19.83a	19.39A	18.33bc	18.25bc	21.08a	19.22A
Mean (A x C)**	16.55B	18.08A	18.96A	/	16.83C	18.05B	18.95A	/
		12.34D	14.01C	16.08A		12.75E	14.96CD	16.06AB	
Mean (I	3 x C)***	14.21C	16.14A	16.38A		14.77D	16.01AB	15.87A-C	
		14.63BC	14.74BC	15.41AB		15.32B-D	15.28B-D	16.33A	
Mea	n (A)#	13.36B	13.342B	17.86A		13.43C	14.41B	17.94A	
	и (В)##	14.14C	15.57A	14.93B		14.59B	15.55A	15.64A	
Mean	ı (C)###	13.73C	14.96B	15.96A		14.28C	15.42B	16.09A	/

Values followed by the same letter/s are not significantly different at 5% level.

Shoot diameter (cm)

A. Specific effect:

Regarding the specific effect of the three investigation factors (anti-salt stress substances) on shoot diameter of Valencia orange trees, data tabulated in Table (3) indicated that, the lower level of the three investigated factors (K-Silicate at 5 ml/L, Nile Fertile at 250 g/tree and Magnetic Iron at 300

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

[#], ##, ### refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

g/tree) was better than the higher level in stimulating shoot diameter and subsequently achieved higher value of such parameter.

Table 3: Shoot diameter (cm) of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

ex	perimental seasoi	1S.								
	Parameter			S	Shoot diam	eter (cm)				
Treatments			(2014 -	- 2015)		(2015 - 2016)				
K-Silicate	Nile Fertile	1	Magnetic I	ron (g) (C))	Magnetic Iron (g) (C)				
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*	
	0	0.337i-m	0.377ef	0.363fg	0.359D	0.303ij	0.343e-g	0.313hi	0.320D	
0	250	0.403cd	0.367fg	0.353g-i	0.374C	0.340e-g	0.340e-g	0.327gh	0.336C	
	500	0.360f-h	0.350g-j	0.417bc	0.376C	0.327gh	0.327gh	0.357de	0.337C	
Mean	ı (A x C)**	0.367C	0.365C	0.378B		0.323EF	0.337D	0.332DE		
	0	0.377ef	0.423b	0.390de	0.397B	0.357de	0.357de	0.367d	0.360B	
5	250	0.433ab	0.427b	0.447a	0.436A	0.400c	0.383c	0.443a	0.409A	
	500	0.373ef	0.353g-i	0.340i-l	0.355DE	0.337fg	0.333fg	0.340e-g	0.337C	
Mean	ı (A x C)**	0.394A	0.401A	0.392A		0.365B	0.358BC	0.383A		
	0	0.363fg	0.403cd	0.320m	0.362D	0.347ef	0.417b	0.337fg	0.367B	
10	250	0.323lm	0.390de	0.333j-m	0.349E	0.293j	0.397c	0.327gh	0.339C	
	500	0.330k-m	0.343h-k	0.367fg	0.347E	0.307ij	0.327gh	0.390c	0341C	
Mean	ı (A x C)**	0.339D	0.379B	0.340D		0.316F	0.380A	0.351C	,	
		0.359E	0.401A	0.358E		0.336CD	0.372A	0.339C		
Mean	(B x C)***	0.386BC	0.395AB	0.378CD	/	0.344C	0.373A	0.366AB		
		0.354E	0.349E	0.375D		0.324E	0.329DE	0.362B		
Me	ean (A)#	0.370B	0.396A	0.353C		0.331C	0.369A	0.349B		
Me	an (B)##	0.373B	0.386A	0.359C		0.349B	0.361A	0.338C	/	
Mea	an (C)###	0.367B	0.381A	0.370B		0.335B	0.358A	0.356A		

Values followed by the same letter/s are not significantly different at 5% level.

B. Interaction effect:

Concerning the interaction between K-Silicate and Nile Fertile, data reveal that the combination between K-Silicate at 5 ml/L and Nile Fertile at 250 g/tree was the best combination to produce the highest value of shoot diameter during both seasons of study.

With respect to the interaction between K-Silicate and Magnetic Iron, it was clear that the maximum shoot diameter value was detected with the combination between K-Silicate at 5 ml/L combined with Magnetic Iron at either 300 or 600 g/tree or without Magnetic Iron addition in the first seasons. While in the second season, the highest value of shoot diameter was recorded with either the combination between K silicate at 5 ml/L + Magnetic Iron at 600 g/tree or K-Silicate at 10 ml/L + Magnetic Iron at 300 g/tree.

In relation to, the interaction between Nile Fertile and Magnetic Iron, the maximum shoot diameter was detected with the addition of Nile Fertile at 250 g/tree or without addition along with

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##,} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

ISSN: 2077-4605

Magnetic Iron at 300 g/tree i.e. Nile Fertile addition to Magnetic Iron is not beneficial for encouraging shoot diameter.

Referring to the interaction between three investigated factors on shoot diameter, date in Table (3) reveal that the combination between K silicate at 5 ml/L + Nile Fertile at 250 g/tree + Magnetic Iron at 600 g/tree significantly improved shoot diameter and it was the promising combination in this respect.

On the other was way around, the least value of shoot diameter was associated with either those Valencia orange trees which not received any of the three investigated anti-salt stress substances, or those trees subjected to K-Silicate at 10 ml/L combined Nile Fertile at either 250 or 500 g/tree.

Number of leaves / shoot.

A. Specific effect:

With respect to the specific effect of the three investigated factors (K-Silicate, Nile Fertile and Magnetic Iron) on number of leaves/shoot of drip irrigated Valencia orange trees with saline water irrigation, data presented in Table (4) indicated that the higher level of both K silicate (10 ml/L) and Magnetic Iron (600 g/tree) as well as the lower level of Nile Fertile (250 g/tree) were effective in this respect as the three abovementioned levels significantly increased the number of leaves/shoots.

B-Interaction effect:

As for the interaction between K-Silicate and Nile Fertile on no. of leaves/shoot, data indicated that the highest significant value of number of leaves/shoot was obtained with the combination between the higher level of K-Silicate (10 ml/L) and Nile Fertile (500 g/tree), followed in descending order by K-Silicate at 10 ml/L + Nile Fertile at 250 g/tree and K-Silicate at 10 ml/L alone (with Zero Nile Fertile).

In case of the interaction between K-Silicate and Magnetic Iron, the maximum number of leaves/shoot was detected with the combination between the higher level of both K-Silicate (10 ml/L) and Magnetic Iron (600 g/tree), followed in descending order by the union between the higher level of K-Silicate (10 ml/L) and the lower level of Magnetic Iron (300 g/tree) and the addition of K-Silicate at 10 ml/L alone.

Regarding the interaction between Nile Fertile and Magnetic Iron, it is clear that using Magnetic Iron at 600 g/tree alone or 300 g/tree + Nile Fertile at 250 g/tree significantly maximized the investigated parameter.

Dealing with the interaction effect between the three anti-salt stress substances on number of leaves/shoot data indicated that the highest value of the investigated parameter in the 1st season was obtained either with using

- K-Silicate at 10 ml/L + Magnetic Iron at 600 g/tree or
- K-Silicate at 10 ml/L + 250 or 500 g/tree of Nile Fertile + 300 g/tree Magnetic Iron or
- K-Silicate at 10 ml/L + 500 g/tree Nile Fertile and 0.0 addition of Magnetic Iron

Meanwhile, the best result regarding the number of leaves/shoot in the second season, was detected when the trees received the higher level of each investigated three factors.i.e. 10 ml/L of K-Silicate + 500 g/tree Nile Fertile + 600 g/tree of Magnetic Iron.

On the other hand, the least value of number of leaves/shoot was cleared with those Valencia orange trees which did not receive any of the three investigated anti-salt stress substances.

Average leaf area (cm²).

A-Specific effect:

Regarding average leaf area of drip irrigated Valencia orange trees with saline water irrigation as effected by the specific of the three investigated anti-salt stress substances data presented in Table (5) refer that the higher level of each individual investigated factors (10 ml/L of K-Silicate or 500 g/tree Nile Fertile or 600 g/tree Magnetic Iron) caused highly significant improvement in average leaf

area, followed by the lower level of each investigated factors, as compared with untreated trees which reflect the least value of the investigated parameter.

Table 4: Number of leaves/branches of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

2010)	Parameter			Numl	per of leav	ves/branch	nes			
Treatments			(2014 – 2					- 2016)		
K-Silicate	Nile Fertile	Ma	agnetic Iro			Magnetic Iron (g) (C)				
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*	
	0	4.37m	5.43jk	6.79d	5.53E	4.12n	5.79k	6.84e	5.58G	
0	250	5.14kl	6.20e-g	5.89g-i	5.74E	4.98m	6.23h-j	5.97jk	5.73FG	
	500	6.33ef	4.811	5.60h-j	5.58E	6.53e-h	5.85k	6.12i-k	6.17E	
Mean (A	x C)**	5.28FG	5.48F	6.09G		5.21F	5.96E	6.31D		
	0	5.20k	5.68h-j	5.77h-j	5.55E	5.99jk	6.28h-j	6.44g-i	6.24E	
5	250	5.9f-h	5.90gh	6.88d	6.26D	6.77e-g	6.43g-i	6.80ef	6.67D	
	500	4.07m	5.68h-j	5.48i-k	5.08F	5.461	6.07jk	5.93jk	5.82F	
Mean (A	x C)**	5.09G	5.75E	6.04D		6.07E	6.26D	6.39D		
	0	5.97f-h	6.55de	7.70c	6.74C	6.47f-h	7.38d	7.62cd	7.16C	
10	250	6.79d	8.21ab	7.86bc	7.62B	7.41d	8.17b	7.86bc	7.81B	
	500	8.07a-c	8.04a-c	8.32a	8.14A	7.92bc	7.90bc	9.13a	8.32A	
Mean (A	x C)**	6.94C	7.60B	7.96A	/	7.27C	7.82B	8.20A		
		5.18E	5.89D	6.75A		5.53D	6.48BC	6.97A	/	
Mean (B	x C)***	5.97CD	6.77A	6.88A	/	6.39C	6.94A	6.88A		
		6.16C	6.18C	6.47B		6.64B	6.61B	7.06A	/	
Mean	(A)#	5.62B	5.63B	7.50A		5.83C	6.24B	7.76A	1 /	
Mean (5.94C	6.54A	6.27B	/	6.33B	6.74A	6.77A	/	
Mean ((C)###	5.77C	6.28B	6.70A	/	6.18C	6.68B	6.97A	1/	

Values followed by the same letter/s are not significantly different at 5% level.

B- Interaction effect:

Regarding the interaction between K-Silicate and Nile Fertile on average leaf area, it is clear that the addition of K-Silicate at 10 ml/L to Nile Fertile at (250 or 500 or 0.0 g/tree) reflect the highest value of average leaf area, and such values were image of each other and in turn from a commercial view it is preferable to add K-Silicate at 10 ml/L alone.

With respect to the interaction between K-Silicate and Magnetic Iron, the combination between K-Silicate at $10 \, \text{ml/L}$ and Magnetic Iron either at $0.0 \, \text{or} \, 300 \, \text{g/tree}$ reflected the maximum value of average leaf area, and subsequently it is recommended to use K-Silicate at $10 \, \text{ml/L}$ alone.

The interaction between Nile Fertile and Magnetic Iron on average leaf area, it was obvious that the higher level of both factors (500 g/tree of Nile Fertile + 600 g/tree Magnetic Iron) proved to be the most effective in enhancing average leaf area followed by the higher level of Nile Fertile (500 g/tree) + the lower level of Magnetic Iron 300 g/tree.

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

Concerning the interaction effect between the three anti-salt stress substances on average leaf area, the obtained data revealed that the highest value of the investigated parameter was detected with either the combination between 10 ml/L K-Silicate + 250g/tree Nile Fertile + 300 g/tree Magnetic Iron or the higher level of K-Silicate 10 ml/L + the higher level of Nile Fertile 500 g/tree.

Table 5: Average leaf area of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

	Parameter			Ave	erage leaf	area (cm ²))			
Treatments			(2014 –	2015)		(2015 – 2016)				
K-Silicate	Nile Fertile	1	Magnetic Ir	on (g) (C)		Magnetic Iron (g) (C)				
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*	
	0	15.39m	16.21m	20.87k	17.49F	14.06m	19.111	20.711	17.96G	
0	250	18.621	19.64kl	19.37kl	19.21E	19.271	19.921	19.571	19.59F	
	500	24.24j	25.29ij	26.19i	25.24D	22.82k	24.62j	27.17hi	24.87E	
Mea	n (A x C)**	19.42G	20.38F	22.14E		18.72H	21.22G	22.48F		
	0	25.82ij	28.57f-h	29.27e-h	27.89B	25.74ij	28.05gh	28.65f-h	27.48C	
5	250	30.53b-е	29.52d-g	31.08a-d	30.38A	29.44e-g	28.76f-h	29.77ef	29.32B	
	500	24.57ij	28.07gh	27.76h	26.80C	24.57j	26.43i	28.67f-h	26.56D	
Mea	n (A x C)**	26.97D	28.72C	29.37BC		26.58E	27.75D	29.03C		
	0	31.48a-c	30.07c-f	30.20b-f	30.58A	30.48de	33.20a	31.50b-d	31.73A	
10	250	29.57d-g	32.30a	29.17e-h	30.35A	31.00с-е	33.20a	32.20a-c	32.13A	
	500	31.78ab	29.40d-h	29.69d-g	30.29A	32.30a-c	30.50de	32.93ab	31.91A	
Mea	n (A x C)**	30.94A	30.59A	29.68B		31.26B	32.30A	32.21A	/	
		24.23D	24.95D	26.78BC		23.43C	26.79B	26.95B		
Mear	n (B x C)***	26.24C	27.15А-С	26.54C		26.57B	27.29B	27.18B		
		26.86BC	27.59AB	27.88A		26.56B	27.18B	29.59A		
М	Iean (A)#	20.64C	28.35B	30.41A		20.81C	27.79B	31.92A		
Me	ean (B)##	25.32C	26.64B	27.44A		25.72C	27.01B	27.78A		
Me	ean (C)###	28.78C	26.56B	27.07A		25.52C	27.09B	27.91A		

Values followed by the same letter/s are not significantly different at 5% level.

Tree canopy volume (m³).

A. Specific effect:

With regard to the specific effect of three anti-salt stress substances on tree canopy volume of drip irrigated Valencia orange trees with saline water irrigation, data presented in Table (6) reflect that tree canopy volume was associated with the applied dose of each investigated factor i.e. the higher response of tree canopy volume was recorded with the higher dose of the three investigated factors. Meanwhile, the lower dose of each factor reflected also lower tree canopy volume. Furthermore, the least value of tree canopy volume was noticed also with untreated trees.

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

B- Interaction effect:

With respect to the interaction effect between K-Silicate and Nile Fertile, data indicated that the best increment in tree canopy volume was achieved when the trees received the higher level of both K-Silicate (10 ml/L) + Nile Fertile (500 g/tree) followed by K-Silicate at 10 ml/L + Nile Fertile at 250 g/tree. On the other hand, the least value of tree canopy volume was recorded with untreated trees.

The interaction between K-Silicate and Magnetic Iron, data reflect that K-Silicate at 10 ml/L combined with either dose of Magnetic Iron (0.0 or 300 or 600 g/tree) reflect the highest value of tree canopy volume, as each response was an image of each other. Hence, it is recommended in such case to spray the trees with K-Silicate alone at 10 ml/L.

Regarding, the interaction effect between Nile Fertile and Magnetic Iron on tree canopy volume, data revealed that the highest value was obtained with the combination between Nile Fertile at 500 g/tree with either 0.0 or 600 g/tree of Magnetic Iron during both seasons of study. Therefore, the Magnetic Iron application was not necessary in such case.

Table 6: Tree canopy volume of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

	experimental	seasons.							
	Parameter			T	ree canopy	volume (m ³	·)		
Treatments			(2014 -	- 2015)			(2015 -	- 2016)	
K-Silicate	Nile Fertile		Magnetic I	ron (g) (C)			Magnetic I	ron (g) (C)	
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*
	0	15.83j	19.52i	20.69hi	18.68G	15.871	21.14h-j	19.54jk	18.85E
0	250	19.48i	20.50hi	22.08f-h	20.69F	19.23k	19.57jk	20.33i-k	19.71E
	500	22.40e-h	21.49gh	22.90d-g	22.26E	22.01f-i	21.30g-j	23.93c-f	22.41D
Mean ((A x C)**	19.24E	20.50D	21.89C		19.04E	20.67D	21.27D	
	0	25.30c	23.07d-g	24.75cd	24.37C	24.23cd	22.27d-h	24.23cd	23.58C
5	250	24.10c-f	22.81d-g	24.42с-е	23.78CD	24.30c	23.90c-f	23.42c-f	23.87C
	500	24.20с-е	21.27g-i	24.30с-е	23.26DE	23.17c-g	22.50c-h	24.03с-е	23.23CD
Mean ((A x C)**	24.53B	22.38C	24.49B		23.90C	22.89C	23.89C	
	0	26.04c	22.67e-g	23.10d-g	23.94CD	24.07с-е	22.82c-h	22.08e-i	22.99CD
10	250	22.77d-g	28.29b	28.07b	26.38B	22.48c-h	27.63b	28.53ab	26.21B
	500	31.26a	28.50b	30.48a	30.08A	30.04a	28.50ab	30.13a	29.56A
Mean ((A x C)**	26.69A	26.49A	27.22A	/	25.53B	26.32AB	26.61A	/
		22.39DE	21.75E	22.85CD	/	21.39C	22.08C	21.95C	
Mean (B x C)***	22.12DE	23.87BC	24.86B		22.00C	23.70B	24.09B	
		25.95A	23.75C	25.89A		25.07A	24.10B	26.03A	
Mea	ın (A)#	20.54C	23.80B	26.80A		20.32C	23.56B	26.25A	
Mear	n (B)##	22.33C	23.61B	25.20A		21.81C	23.27B	25.07A	
Mear	n (C)###	23.49B	23.12B	24.53A	/	22.82B	23.29B	24.02A	

Values followed by the same letter/s are not significantly different at 5% level.

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

The interaction between K-Silicate, Nile Fertile and Magnetic Iron on tree canopy volume, data show that, the maximum value of such parameter was remarked with two combinations:

1- K-Silicate at 10 ml/L + Nile Fertile at 500 g/tree.

2- K-Silicate at 10 ml/L + Nile Fertile at 250 g/tree + either 300 or 600 g/tree Magnetic Iron.

On the other hand, the least value of tree canopy volume was recorded with untreated trees with any of the three anti-salt stress substances during both seasons of study.

Our results regarding the impact of K-Silicate on vegetative growth of Valencia orange trees are in harmony with those reported by some investigators. Silicon had two different impacts on plant growth either through soil fertility or its effect on plant tolerance to stress. Silicon rich substances applied to the soil enhanced the initial growth of grapefruit seedlings (Matichenkove *et al.*, 1999). In this respect Silicon nutrition was responsible for a significant increase in root dry and green mass of Valencia orange and grape fruit seedling (Matichenkove *et al.*, 2001). Meanwhile, Ibrahim and Elwasfy, (2014), revealed that treating Valencia orange trees with a mixture of boric acid + K-Sulphate at 0.5% + K-Silicate at 0.1% gave the best results of growth parameters. Similar results have been gotten with some other fruit trees, Abdel Aal and Oraby (2013); Abd El-Rahman (2015); Mohamed *et al.*, (2015) on mango trees, Al-Wasfy, (2013); Gad El-Kareem *et al.*, (2014) on date palm, Roshdy (2014) on banana, Al-Wasfy (2014) on flame seedling, Akle *et al.*, (2015) on pomegranate, Zaen El-Deen *et al.*, (2015) on mango trees cv. Keitt and Sa *et al.*, (2015) on papaya plants and Abd El-Rahman, Amira, (2016) on two grape cvs. Transplant. They pointed out that shoot length, number of leaves/shoot, leaf area and stem diameter were positively affected by spraying with K-Silicate.

The obtained results concerning the impact of Nile Fertile on vegetative growth of Valencia orange trees are confirmed by the findings of Mankolah (2017), who reported that treated Washington navel orange trees with Nile Fertile at 750g/tree and Sulphur at 1.0 kg/tree were very effective in enhancing the growth parameters. An analogous result were registered by Ibrahiem, Alia (2003); Rizk-Alla *et al.*, (2006); Ashour *et al.*, (2009) on Balady orange trees, Rizk-Alla, Mervat and Tolba, Hager, (2010) on Black Monukka grapevines and Ali, Mervat *et al.*, (2013) on vineyards. They mentioned that Nile Fertile succeeded to restrict the negative effect of saline water irrigation on shoot length, stem diameter, number of leaves and leaf area.

The present results dealing with the relation between soil Magnetic Iron application and Valencia orange growth, are in agreement with those reported by Ibrahim, (2011) on navel orange trees and Abobatta, (2015) on Valencia orange trees. They found that Magnetic Iron significantly improved shoot length, stem diameter, number of leaves/shoot and leaf area. The same finding was reported by Abd El-Rahman, Amira, (2016) on two own rooted grape cvs. and El-Tarawy, (2017) on picual olive transplants. They cleared that salt stressed transplants subjected to K-Silicate spray and Magnetic Iron soil added as recovering substances were more effective in alleviating the adverse of salinity on growth.

Leaf physiological characteristics:

Leaf relative turgidity percentage (L.R.T):

A-Specific effect

Regarding the specific effect of the three investigated anti-salt stress substances (potassium silicate, Nile Fertile and Magnetic Iron) on leaf relative turgidity percentage, of Valencia orange trees data represented in Table (7) revealed that, the highest significant value of leaf relative turgidity percentage was obtained when the trees where sprayed with potassium silicate at 10ml/L. Meanwhile Nile Fertile at 250 g/tree was more effective in this respect than 500 g/tree.

Concerning the specific effect of Magnetic Iron. It was clear that the higher dose 600 g/tree was better than the lower dose (300 g/tree) in increasing leaf relative turgidity percent..

Table 7: Leaf relative turgidity (%) of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons

	– 2016) e	xperimental	seasons.							
	Parameter		<u>-</u>	I	eaf relative	turgidity (%	(o)			
Treatments			(2014 -	- 2015)			(2015	- 2016)		
K-Silicate	Nile Fertile		Magnetic I	ron (g) (C)		Magnetic Iron (g) (C)				
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*	
	0	46.031	52.43h-j	61.67a	53.38D	53.60gh	55.23e-g	61.97ab	56.93C	
0	250	54.67d-i	58.63a-c	55.00c-h	56.10BC	55.30e-g	61.20a-c	57.07d-f	57.86C	
	500	57.57b-f	52.29h-j	53.38g-i	54.41CD	58.63b-e	50.59h-j	52.08g-i	53.77DE	
Mean (A x C)**	52.76DE	54.45CD	56.68B		55.84BC	55.67BC	57.04B		
	0	51.08i-k	54.33e-i	55.08c-h	53.50D	49.22i-k	53.37gh	54.48fg	52.36E	
5	250	57.12c-g	56.37c-g	58.25a-d	57.25B	55.34e-g	54.93fg	61.74a-c	57.34C	
	500	46.301	47.79kl	48.37kl	47.49E	44.17m	45.26lm	46.39k-m	45.27F	
Mean (A x C)**	51.50E	52.83DE	53.90D		49.58D	51.19D	54.20C		
	0	49.57j-l	53.80f-i	57.60b-f	53.66D	48.03j-l	57.47d-f	58.37с-е	54.62D	
10	250	57.73b-e	57.77b-e	58.13a-e	57.88B	58.83b-d	59.70a-d	61.13a-c	59.89B	
	500	61.30ab	61.57a	61.70a	61.52A	61.40a-c	61.70a-c	62.73a	61.94A	
Mean (A x C)**	56.20BC	57.71AB	59.14A	/	56.09B	59.62A	60.74A		
		48.90D	53.52C	58.12A	/	50.28E	55.36BC	58.27A	/	
Mean (I	3 x C)***	56.51AB	57.59A	57.13A		56.50B	58.61A	59.98A		
		55.06BC	53.88C	54.48C		54.73BC	52.52D	53.73CD		
Mean	n (A)#	54.63B	52.74C	57.69A		56.19B	51.66C	58.82A		
Mean	ı (B)##	53.51B	57.07A	54.47B		54.64B	58.36A	53.66B		
Mean	(C)###	53.49C	55.00B	56.58A	/	53.84C	55.49B	57.33A	/	
					V			I	V	

 ${\it Values followed by the same letter/s are not significantly different at 5\% level.}$

B-Interaction effect:

With referring to the interaction between potassium silicate and Nile Fertile on leaf relative turgidity percentage, data indicated that the maximum leaf relative turgidity percent was detected with the combination between potassium silicate at 10 ml/L and Nile Fertile at 500 g/tree.

Regarding the interaction between K-Silicate and Magnetic Iron on leaf relative turgidity percentage, data referred that K-Silicate at 10 ml/L combined with either 300 or 600 g/tree of Magnetic Iron reflected an increment of leaf relative turgidity percent as compared with Magnetic Iron omitted combination.

As for, the interaction between the soil addition of Nile Fertile and Magnetic Iron, it is clear that the maximum leaf relative turgidity percentage value was detected with the combination between Magnetic Iron at (either 300 or 600 g/tree) + Nile Fertile at (250 g/tree) or Magnetic Iron alone at (600 g/tree) during both seasons of study.

With respect to the interaction effect between the three investigated factors (K-Silicate, Nile Fertile and Magnetic Iron) on leaf relative turgidity percentage, data indicated that the Magnetic Iron alone at 600 g/tree or combination between (K-Silicate at 10 ml/L + Nile Fertile at 500 g/tree + Magnetic Iron at

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

(either 300 or 600 g/tree)) was the best one as it reflected the highest value of leaf relative turgidity percentage during both seasons of study.

Meanwhile, the least value was associated with those untreated trees (control).

Leaf succulence grade percentage (L.S.G):

A-Specific effect

Regarding the specific effect of the three investigated anti-salt stress substances (K-Silicate, Nile Fertile and Magnetic Iron) on leaf succulence grade of Valencia orange trees data presented in Table (8) revealed that, the highest significant value of leaf succulence grade was maximized with higher dose of each investigated factor.

Table 8: Leaf succulence grade of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

	parameter	Leaf succulence grade (g H ₂ o/dec ² of leaf)									
Treatments	•		(2014 -			.5 -	(2015 -	2016)			
K-Silicate	Nile Fertile	N	Magnetic Ir			Magnetic Iron (g) (C)					
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*		
	0	1.57kl	1.67h-k	1.87e-g	1.70EF	1.33p	1.57l-n	1.97ef	1.62F		
0	250	1.70h-k	1.80e-h	1.73g-j	1.74DE	1.63k-m	1.90fg	1.80g-i	1.78E		
	500	1.80e-h	1.77f-i	1.87e-g	1.81CD	1.87f-h	1.80g-i	1.93ef	1.87D		
Mean (A	A x C)**	1.69D	1.74CD	1.82B		1.61D	1.76C	1.90B			
	0	1.70h-k	1.87e-g	1.90ef	1.82C	1.70i-k	2.03de	2.13cd	1.96C		
5	250	1.93de	1.93de	2.03cd	1.97B	2.33ab	2.23bc	2.37a	2.31A		
	500	1.60j-l	1.63i-k	1.67h-k	1.63F	1.30p	1.40op	1.50no	1.40G		
Mean (A	A x C)**	1.74CD	1.81BC	1.87B		1.78C	1.89B	2.00A			
	0	1.73g-j	1.501	1.73g-j	1.66F	1.53mn	1.60k-n	1.63k-m	1.59F		
10	250	1.73g-j	1.87e-g	1.87e-g	1.82C	1.67j-l	1.77h-j	2.13cd	1.86D		
	500	2.10bc	2.17b	2.57a	2.28A	2.13cd	2.23bc	2.27ab	2.21B		
Mean (A	A x C)**	1.86B	1.84B	2.06A		1.78C	1.87B	2.01A	,		
		1.67D	1.68D	1.83BC		1.52F	1.73E	1.91BC			
Mean (E	3 x C)***	1.79C	1.87B	1.88B		1.88C	1.97B	2.10A			
		1.83BC	1.86BC	2.03A		1.77DE	1.81D	1.90C			
Mear	n (A)#	1.75C	1.81B	1.92A		1.76B	1.89A	1.89A			
Mean	(B)##	1.73C	1.84B	1.91A		1.72C	1.98A	1.83B			
Mean	(C)###	1.76B	1.80B	1.92A		1.72C	1.84B	1.97A			

Values followed by the same letter/s are not significantly different at 5% level.

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

B-Interaction effect:

With referring to the interaction between K-Silicate and Nile Fertile on leaf succulence grade percent, data indicated that the maximum leaf succulence grade percentage was detected with the combination between higher level of K-Silicate and Nile Fertile in 1^{st} season. While, the lower dose of both factors was more pronounced in the 2^{nd} season.

Regarding to the interaction between K-Silicate and Magnetic Iron on leaf succulence grade percent, data referred that K-Silicate at (10 ml/L) combined with 600 g/tree of Magnetic Iron reflected the highest increment of leaf succulence grade percentage as compared with Magnetic Iron omitted combination.

As for, the interaction between the soil addition of Nile Fertile and Magnetic Iron, it is cleared that the maximum leaf succulence grade percentage value was detected with the combination between the higher dose Magnetic Iron with either the higher dose of Nile Fertile in the $1^{\underline{s}\underline{t}}$ season or the lower level in the $2^{\underline{n}\underline{d}}$ season.

With respect to the interaction effect between the three investigated factors (K-Silicate, Nile Fertile and Magnetic Iron) on leaf succulence grade percentage, data indicated that the best value of such parameter was recorded by combination between the higher doses of the three investigated factors.

On the other way around, the least value of the investigated parameter was associated with untreated trees (control).

Leaf water potential percentage (L.W.P):

A-Specific effect

Regarding the specific effect of the three investigated anti-salt stress substances (K-Silicate, Nile Fertile and Magnetic Iron) on leaf water potential percentage of Valencia orange trees data presented in Table (9) reveal that, the highest significant value of leaf water potential percentage was obtained by K-Silicate at (10 ml/L). Meanwhile, Nile Fertile at (250 g/tree) and Magnetic Iron at 600 g/tree were more effective in this respect.

B-Interaction effect:

With referring to the interaction between K-Silicate and Nile Fertile on leaf water potential percentage, data indicated that the maximum leaf water potential percentage was detected with the combination between the higher level of K-Silicate and Nile Fertile in $1^{\underline{st}}$ season. While, the lower level of both factors was predominant in the $2^{\underline{nd}}$ season.

Regarding the interaction between K-Silicate and Magnetic Iron on leaf water potential percentage, data referred that, K-Silicate at (10 ml/L) combined with 600 g/tree of Magnetic Iron reflected the highest value of leaf water potential percentage as compared with the other combinations.

As for, the interaction between the soil addition of Nile Fertile and Magnetic Iron, it is clear that the maximum leaf water potential percentage value was detected with the combination between the higher dose of Magnetic Iron and Nile Fertile at 250 g/tree during both seasons.

With respect to the interaction effect between the three investigated factors (K-Silicate, Nile Fertile and Magnetic Iron) on leaf water potential percentage, data indicated that, the combination between the higher level of the three investigators factors (K-Silicate at 10 ml/L + Nile Fertile at 500 g/tree + Magnetic Iron at 600 g/tree) was the superior one in this respect as it reflected the highest value of leaf water potential percentage during both seasons of study.

The opposite was true with untreated trees (control) which exhibited the least value of such parameter.

ISSN: 2077-4605

Table 9: Leaf water potential (%) of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons.

20	J16) experim	entai seaso	ns.								
	Parameter			L	eaf water	potential (%	6)				
Treatments			(2014 -	2015)			(2015 - 2016)				
K-Silicate	Nile Fertile]	Magnetic Ir	on (g) (C)			Magnetic Iron (g) (C)				
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*		
	0	47.18m	51.89jk	61.58ab	53.55D	54.19j	53.30j	59.73d-f	55.74E		
0	250	56.33d-g	57.75de	57.10d-f	57.06B	56.50i	59.09e-g	57.10hi	57.56CD		
	500	57.74jk	51.74jk	53.14ij	54.14D	58.37f-h	57.60g-i	58.31f-h	58.09BC		
Mean (A	4 x C)**	53.68C	53.79BC	57.27A		56.35D	56.66D	58.38BC			
	0	51.00kl	54.39g-i	55.29f-h	53.56D	57.53g-i	58.61e-h	59.17e-g	58.44BC		
5	250	58.07d	55.48f-h	59.99bc	57.85B	64.91b	60.18с-е	64.94b	63.34A		
	500	46.10m	46.51m	49.251	47.29F	54.50j	54.54j	56.42i	55.15E		
Mean (A	A x C)**	51.72D	52.13D	54.84B		58.98B	57.78C	60.18A			
	0	49.821	50.66kl	54.16hi	51.55E	57.27hi	56.40i	56.50i	56.72D		
10	250	54.72g-i	55.30f-h	55.92e-h	55.31C	57.53g-i	58.70e-h	60.13с-е	58.79B		
	500	57.10d-f	58.28cd	62.57a	59.32A	61.00cd	61.57c	66.53a	63.03A		
Mean (A	A x C)**	53.88BC	54.75BC	57.55A		58.60BC	58.89B	61.05A	/		
		48.33F	52.31E	57.01AB		56.33F	56.10F	58.47DE	/		
Mean (E	3 x C)***	56.37B	56.18B	57.67A		59.65BC	59.32CD	60.72A			
		53.58D	52.18E	54.99C		57.96E	57.90E	60.42AB			
Mear	n (A)#	54.92A	52.90B	55.39A		57.13C	58.98B	59.51A			
Mean	(B)##	52.89C	56.74A	53.58B		56.97C	59.90A	58.76B			
Mean	(C)###	53.10B	53.56B	56.56A		57.98B	57.78B	59.87A			

Values followed by the same letter/s are not significantly different at 5% level.

Leaf osmotic pressure (L.O.P).

A- Specific effect:

Regarding the specific effect of the three investigation factors (anti-salt stress substances) on leaf osmotic pressure percentage of Valencia orange trees, data tabulated in Table (10) indicated that, the lowest level of the three investigated factors were achieved the highly leaf osmotic pressure percent during both seasons of study.

The addition of either one of the three anti-salt stress substances had a positive effect on reducing leaf osmotic pressure regardless its level, as compared with the neglected ones.

B- Interaction effect:

With referring to the interaction between K-Silicate and Nile Fertile on leaf osmotic pressure percentage, data referred that the least value of the investigated parameter was detected with the combination between K-Silicate at 5 ml/L with either the higher dose of Nile Fertile in the 1st season or the

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

lower one in the $2^{\underline{nd}}$ season. Meanwhile, the highest leaf osmotic pressure was presented in the absence of both factors.

Concerning, the interaction between K-Silicate and Magnetic Iron on leaf osmotic pressure percent, data refer that the minimum value of the investigated parameter was associated with using K-Silicate at 5 ml/L combined with either Magnetic Iron at the lower level in the 1^{st} season or the higher level in the 2^{nd} season. The reverse was true with using K-Silicate at 10 ml/L alone as it caused a sharp increment in leaf osmotic pressure.

In relation to, the interaction between the soil addition of Nile Fertile and Magnetic Iron, it was clear that any combination between the lower and higher levels both factors reflected an acceptable reduction in the investigated factor as compared with untreated trees with neither of both.

Table 10: Leaf osmotic pressure (in bar) of drip irrigated Valencia orange trees with saline water as impacted by specific and interaction effects of three anti-salt stress substances during (2014 – 2015) and (2015 – 2016) experimental seasons

_	- 2016) exper	imentai seas	JIIS.						
	Parameter			Leaf	ssure (in ba	ar)			
Treatments			(2014 - 2	2015)			(2015	- 2016)	
K-Silicate	Nile Fertile	I	Magnetic Iro	on (g) (C)]	Magnetic 1	ron (g) (C)	
ml/L (A)	(g) (B)	0	300	600	A x B*	0	300	600	A x B*
	0	21.80a	18.88b	14.42e	18.37A	22.45a	19.78b	11.44k	17.89A
0	250	19.13b	14.10e	12.53fg	15.25BC	19.53b	14.75fg	16.04de	16.77B
	500	10.79ij	15.39d	12.39fg	12.86E	15.07ef	13.18hi	13.04hi	13.76C
Mean (A	A x C)**	17.24B	16.12C	13.11D		19.02A	15.9	13.51E	
	0	14.11e	10.03j	17.14c	13.76D	14.76fg	12.88hi	11.77jk	13.14D
5	250	12.23fg	10.67ij	16.46c	13.12E	10.68k	11.32k	9.18i	10.40F
	500	11.12hi	8.83k	15.38d	11.68F	17.79c	17.11cd	16.03de	16.98B
Mean (A	A x C)**	12.49E	9.74G	16.33C		14.41D	13.77E	12.33F	
	0	14.76de	16.88c	13.10f	14.91C	15.41ef	20.26b	19.63b	18.43A
10	250	19.61b	15.48d	11.90gh	15.66B	17.53c	16.13de	16.11de	16.59B
	500	18.98b	15.46d	10.10j	14.85C	13.75g-i	12.55ij	10.75k	12.53E
Mean (A	A x C)**	17.78A	15.94C	11.70F	/	15.56A	16.32B	15.50C	/
		16.89A	15.26B	14.89B		17.54A	17.64A	14.28C	
Mean (E	3 x C)***	16.99A	13.42C	13.63C	1 /	15.91B	14.07C	13.78CD	
		13.63C	13.13CD	12.62D	1 /	15.54B	14.28C	13.28D	
Mear	n (A)#	15.49A	12.85C	15.14B	1 /	16.14A	13.50C	15.79B	
Mean	(B)##	15.84A	13.94B	13.71B	1 /	16.14A	14.59B	14.36B	
Mean	(C)###	15.68A	14.68B	13.13C	/	16.33A	15.33B	13.78C	

Values followed by the same letter/s are not significantly different at 5% level.

With respect to the interaction effect between the three investigated factors (K-Silicate, Nile Fertile and Magnetic Iron) on leaf osmotic pressure percentage, data indicated that the combination between the lower level of K-Silicate (5 ml/L) combined with either the higher level of Nile Fertile (500 g/tree) + the lower level of Magnetic Iron (300 g/tree) in the 1st season, or with the lower level of Nile Fertile (250 g/tree) + the higher level of Magnetic Iron (600 g/tree) in the 2st season, was able to reduce

^{*, **, ***} refer to the interaction effect between K-silicate & Nile Fertile and Magnetic Iron, respectively.

^{#, ##, ###} refer to the specific effect of K-silicate & Nile Fertile and Magnetic Iron respectively.

leaf osmotic pressure to the minimum value. The reverse was true with untreated trees with neither one of the three investigated factors, as the absence of such factors led to increase the osmotic pressure in the leaves, during both seasons of study. Drought tolerance brought about by the application of silicon may result from decreased transpiration (Epstein, 1999) and the presence of silicified structure in plants suggested a reduction of leaf heat load, providing plant tolerance to high temperature (Wang *et al.*, 2005). The resistance to salt stress has been found to be due to the enhancement of catalase, preventing membrane oxidative damage (Moussa, 2006).

The present results regarding the response of four leaf physiological properties are supported by the early findings of Gucci et al., (1997) on two olive cvs. and Hassan, (2005) on some olive cvs. all reported that the rate of water entry into plants depends on both water potential gradient and root resistance, whears the water diffusion gradient between medium and roots decreased appreciably as the salt of irrigation water was increased and this certainly will be reflected on leaf water content and the related leaf physiological characteristics like as (leaf water potential and leaf succulent grade). Moreover, findings of El-Hefnawi, (1986) on Guava found the same trend with leaf succulence and Nomir, (1994) on Kaki go in line with our results regarding the response of leaf succulence grade to the saline irrigation water. Meanwhile, the increase in leaf osmotic pressure character resulted by saline irrigation water is confirmed with findings of Hassan, (2005) on some olive cvs., Sawrsan, Madlen, (2006) on some pomegranate cvs.. As for the effect of some anti-salinity substances on leaf water potential, leaf osmotic pressure and leaf succulence grade, the present results are on harmony with those found by Abdel Aal and Oraby, (2013) on Mango transplants who reported that silicon application increased leaf water content of salt stressed transplants. As well as Abd El-Rahman, Amira (2016) on two grape cvs. Transplants and El-Tarawy, (2017) on Picual Olive transplants, cleared that both potassium silicate and Magnetic Iron application resulted in increasing leaf water potential and leaf succulence grade.

References

- Abd El Aal, A.M.K and M.M.M.Oraby, 2013. Using Salicylic acid for alleviating the Adverse effects of water salinity on growth and nutritional status of mango cv. Alphonse seedlings. World Rulral Observations, 5(2): 41-46.
- Abd El Aal, A.M.K and M.M.M. Oraby, 2013. Using Salicylic acid for alleviating the Adverse effects of water salinity on growth and nutritional status of mango cv. Alphonse seedlings. World Rulral Observations, 5(2): 41-46.
- Abd El-Rahman, Amira, 2016. physiological studies on salt tolerance of some grape cultivars rooted cuttings. Ph. D. thesis Faculty of Agriculture, Benha Univ.
- AbdEl-Rahman, M.M.A., 2015. Relation of Spraying Silicon with Fruiting of Kiette Mango Trees Growing Under Upper Egypt Conditions. Stem Cell; 6(2):1-5.
- Abobatta, W.F., 2015. Influence of Magnetic Iron and K-Humate on Productivity on Valencia Orange Trees (*Citrus Sinensis* L.) under Salinity Conditions. International Journal of Scientific Research in Agricultural Sciences, 2 (Proceedings), pp. 108-119.
- Akl, A. M., M. A.Mohamed, H. I. M. Ibrahim and R. H. M. Mohamed, 2015. Productive capacity of Manfalouty pomergranate trees in relation to spraying of silicon and vitamin B. World Rural Observations, 7(1): 108-118.
- Al- Wasfy, M.M.M., 2014. The Synergistic Effects of Using Silicon with Some Vitamins on Growth and Fruiting of Flame Seedless Grapevines. Stem Cell, 5(1):8-13].
- Ali, Mervat A., S. S. R. El-Gendy, and Ahmed, Ola, A., 2013. Minimizing adverse effects of salinity in vineyards. J. Hort. Sci. & Ornamen. Plants. 5 (1): 12-21.
- Alvarez, J. and L. E. Datnoff, 2001. The economic potential of silicon for intergrated management and sustainable rice production crop port. 20:43-48.
- Al-Wasfy, M. M., 2013. Response of Sakkoty date palms to foliar application of royal jelly, silicon and vitamin B. J. Amer. Sci., 4(5):315-321.
- Annual Reports of Statistical Institute and Agricultural Economic Research in Egypt, 2015.
- Ashour, N.E, M.M.Y.Hegab, and M.Y. Hegab, 2009. Effect of some cultural practices to reducing the adverse effect of salinity on growth and fruiting of Balady orange tree. Journal green farming, 2(11):738-741.
- Draz, M. R., 1986. Response of bitter almond reedling to different water regimes. Ph. D. Thesis, Fac. Agric.

- Cairo. Univ. Egypt.
- Duncan, D. B., 1955. Multiple ranges and multiple F. test. Biometrics, 11: 1-42.
- El-Hefnawi, S. M., 1986. Physiological studies on guava. Ph.D. Thesis, Fac. Agric., Zagazig Univ., Egypt.
- El-Tarawy, O. M., 2017. Physiological studies on olive transplants. Ph.D. Thesis, Fac. Of Agric. Benha Univ. Epstein, E., 1999. Silicon. Annu. Rev. plant Physiol. Plant Mol. Biol. 50:641-664.
- Esitken, A., 2003. Effect of magnetic fields on yield and growth in strawberry 'Camarosa'. J. Hort. Sci. & Biotech. 78(2): 145-147.
- Gad El-Kareem, M. R., A. M. K. Abdel Aal, and A. Y. Mohamed, 2014. The Synergistic Effects of Using Silicon and Selenium on Fruiting of Zaghloul Date Palm (*Phoenix dactylifera* L.). International Journal of Biological, Agricultural, Food and Biotecnological Engineering; 8(3): 259-262.
- Gucci, R., L. Lombardini, and M.Tattini, 1997. Analysis of leaf water relations in leaves of two olive (*Olea europaea*) cultivars differing in tolerance to salinity, Tree Physiology, 17: 13-21.
- Gusov, N. A., 1960. Some methods in studying plant water relations. Leningrad Acad. Sci. USSR.
- Hassan, A.A.F., 2005. Physiological studies on the effect of salt stress on some olive cultivars. Ph.D. Thesis, Fac. of Agric. Moshtohor., Benha Univ., Egypt.
- Ibrahiem, Alia H., 2003. Effect of sulphur on sources the productive efficiency of flame seedless grapevines grown under sandy siol and drip irrigation conditions. Egypt. J. Appl. Sci., 18:1-4.
- Ibrahim, H. M. and M. M. Al-Wasfy, 2014. The Promotive Impact of Using Silicon and Selenium with Potassium and Boron on Fruiting of Valenica Orange Trees Grown Under Minia Region Conditions. World Ruler Observ; 6(2): 28-36.
- Ibrahim, Y. M., 2011. Optimum use of geological raw materials in industry and their environmental impact. Ph. D. Thesis. Fac. Sci. Mansoura Univ.
- Kassem, A, A., H. A. Kassem, H. M. Kamal, and M. M. Shalaby, 1995. The influence of nitrogen fertilizer and/or sulpher application on guava trees grown in alkaline sandy soil. J. Agric. Res., 20 (3):1203-1222.
- Mankolah, M. M. A., 2017. Improved of growth and productivity of Washington navel orange trees by using some soil amendments and GA3 applications. Ph.D. Thesis, Fac. Agric. Kafrielsheik univ
- Mansour, E. R., 2007. Effect of some culture practices on cauliflower tolerance to salinity under Ras Suder conditions. M. Sc. Thesis. Fac. of Agric., Horticulture Dept. Ain Shams Univ.
- Matichenkove, V., E.Bocharkova and D.Calvert, 2001. Response of citrus to silicon soil amendements. Proc. La. State Hort. Soc., 114:94-97.
- Matichenkove, V., V. M. Galvert, and G.Snyder, 1999. Silicon fertilization for citrus in Florida. Proc. La. State Hort. Soc., 112: 5-8.
- Mohamed, M.A., M.A. El-Sayed and H.A.M. Abd El-Wahab, 2015. Response of Succary mango trees to foliar application of silicon and boron. World Rural Observations., 7(2):93-98.
- Morse, J.G. and C.A. Robertson, 1987. Calculating canopy area of citrus trees and surface area of fruits. Florida Entomol. 70-168, (J. Amer. Soc. Hort Sci., 115 (1): 6:8, 1990.
- Moussa, H.R., 2006. Influence of exogenous application of Si on physiological response of salt stressed maize. J. of Agric. and Bio., 8: 293-297.
- Nomir, S. A. E., 1994. Physiological studies on kaki (*Diospyras kaki*. L). Ph. D Thesis, Fac. Agric. Zagazig. Univ., Egypt.
- Rizk-Alla, M.S., M.A. Abd El-Wahab and G.F. Ghobrial, 2006. Alleviation the harmful effects of irrigation water salinity on Thompson seedless grape rooting through the application of Nile fertile as natural soil conditioner. Egypt. J. Apl. Sci., 21(6): 239-257.
- Rizk-Alla, Mervat and Tolba, Hager, 2010. The role of some natural soil conditioner and AM fungi on growth, root, density and distribution, yield and quality of Black Monukka grapevines grown on calcareous soil. Journal of American Science, 6(12): 253-263.
- Roshdy, KH. A., 2014. Effect of spraying silicon and seaweed extract on growth and fruiting of Grandnaine banana. Egypt. J. Agric. Res., 92(3):979-991.
- Sa, F. S., J. L.Araujo, F. S.Olivera, L. A.Silva, R. C. Moreira and A. N.Silva Neto, 2015. Influence of silicon in papaya plant growth. Cientifica (Jaboticabal; 2015. 43(1):77-83.28ref.
- Sawarsan, Madlen, R., 2006. Physiological studies on salinity tolerance of Pomegranate seedlings. Ph. D. Thesis Fac. of Agric., Benha University.

- Snedecor, G. W. and W. G. Cochran, 1980. Statistical Methods. Oxford and J.B.H. Publishing Com. 7th Edition.
- Taha, B. A., E.Khalil, Soha and A. M. Khalil, 2011. Magnetic treatments of *capsicum annuum* L. grown under saline irrigation conditions. J. Apllied Sci. Res. 7(11): 1558 1568.
- Taranovskaia, V. G., 1939. The silicication for subtropics greenhouse and plantations. Soviet Subtropics. 5:38-43.
- Tuna, A.L., C.Kaya, D.Higgs, B.Murillo-Amador, S. Aydemir, and A.R.Girgin, 2008. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot., 62:10-16.
- Wang, L., Q. Nie, M. Li, F. Zhang, J. Zhuang and W. Wang, 2005. Biosilicified structures for cooling plant leaves: a mechanism of highly efficient mid infrared thermal emission. Applied, Physics Letters, 87: 194105.
- Wutcher, H. K., 1989. Growth and mineral nutrition of young orange trees grown with high levels of silicon. HortScience 24:275-277.
- Zaen El-Deen, E. M. A., M. F.Attia, F. H.Laila, M. F. M. Shahin, E. A. E. Genaidy and M. A. Merward, 2015. Soil mulching and foliar anti-transpirations effect on soil, growth and nutrients status of oung mango trees cultivated in Toshka. International Journal of Agricultural Technology; 2015. 11(4): 1013-1032. 36 ref.